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The possibility is raised of adding a randomly fluctuating interaction term to 
the Schr3dinger equation, so that the new equation "reduces" the state vector. 
The exact event that occurs is predicted by the equation and depends upon the 
precise time dependence of the interaction term. The uncertainty in nature is 
attributed to the random behavior of this term. A class of such terms is found. 
This class includes terms whose nonlinear dependence on the wave function is 
identical to that of terms introduced in a previous paper for a similar purpose. 
In the previous paper, the exact event predicted depends upon the initial phase 
factors in the superposition making up the state vector: the uncertainty in 
nature is attributed to random initial phase factors. Another derivation of the 
results in the previous paper is given in an appendix: the calculations in that 
paper and in this appendix are of second order in perturbation theory. On the 
other hand, the calculations in the present paper are exact. A possible answer is 
given to the question, raised in the previous paper, of the nature of the 
"observable" states to which the state vector reduces. 

1. I N T R O D U C T I O N  

Al though q u a n t u m  theory is the most  successful predictive theory 
in  science, it nevertheless is i ncapab le  of e x p l a i n i n g - - l e t  a lone  

p r e d i c t i n g - - t h e  individual  events that  occur in every q u a n t u m  experiment  
(the t ime of decay of a single particle, the angle into which a par t icular  
particle projectile scatters, etc). The state vector (wave funct ion)  of quan-  

tum theory must  be  in terpre ted as corresponding to a n  ensemble  of 
identical  physical systems (Jauch, 1971; B elinfante,  1975). 

Suppose one seeks an  al ternat ive theory that will explain the oc- 
currence of an individual  event. Ra ther  than  modifying q u a n t u m  theory by  
in t roduc ing  a theory with addi t iona l  variables (Belinfante, 1973), it seems 
simplest to follow Schr6dinger 's  original vision of the wave func t ion  as the 
descript ion of an  individual  system. But then the dynamics  of the wave 
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function must be modified: that is, Schr6dinger's own equation must be 
altered to achieve Schr6dinger's interpretation of the wave function. 

To see this, consider the state vector I~,t)  corresponding to the 
physical system consisting of an apparatus making a measurement on a 
single microscopic system. At a time when the measurement has been 
completed, the state vector can be written 

I~P, t)  = E a.(t)ieon(t)) (1.1) 
n 

where the [q).(t)) correspond to different macroscopic outcomes of the 
experiment. According to Schr6dinger's equation, in general, there are 
many a. 's for which 0<la . ( t )12<l .  However, if the state vector is to 
describe a single system, we must have at a sufficiently large time, for some 
m, 

[a,.(t)12~l, la.(t)12~0, nvam (1.2) 

As Schr6dinger (1935) himself pointed out most graphically with his "cat 
paradox," a single macroscopic system never ends up in a physical state 
that can be described by a superposition of macroscopically different 
states; it must end up in a physical state that can be described by a state 
vector such as ] ~ , t ) =  I~m)" 

Therefore, in order to be able to describe a single physical system by a 
state vector, we seek a modification of Schr6dinger's equation that works 
as follows. 

We assume that a single microscopic system together with its environ- 
ment up to, and possibly including, the rest of the universe, is the physical 
system appropriately described by a state vector [this hypothesis has also 
been invoked in the case of quantum theory (Everett, 1957; Pearle, 1967)]. 
The modified Schr6dinger equation is to be designed so that, like Schr6- 
dinger's equation, it possesses the following property. 

Property O. The coefficients in the superposition (1.1) always satisfy 
E.la.(t)lZ= 1. 

The equation is to act like the ordinary Schr6dinger equation until, 
say time t--0, when the state vector has the form (1.1), which one may 
think of as a "linear superposition of pointer positions." Immediately 
following this juncture, the "pointer positions fight it out." That is to say, 
the modified Schr6dinger equation possesses the following property. 

Property 1. The coefficients in the superposition (1.1) end up as in 
(1.2), with all vanishing except one. 
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These properties are still insufficient. In order to make as good 
predictions of the outcomes of experiments as does quantum theory, the 
modified Schr6dinger equation must possess a further property. It must be 
possible to obtain many different solutions of this equation (each possess- 
ing property 1), such that the set of solutions possesses the following 
property. 

Property 2. The fraction of the total number of solutions for which the 
coefficient [am(t)[2--~l, must be equal to lam(0)l 2. 

(We are supposing that the usual quantum mechanical description is 
essentially complete at time t=O, so that lam(O)l 2 is the quantum theory 
prediction of the probability of the ruth outcome of the experiment.) 

We shall call an equation possessing properties O, 1, and 2 a "reducing 
Schr6dinger equation,'* or just a "reducing equation." 

In a previous paper (Pearle, 1976) (hereafter referred to as I), the 
author presented a simple sufficiency test for an equation to be a reducing 
equation. Let x,(t) ==- la~(t)l 2, and denote by ( ~ the average over the set of 
solutions of the equation. If, in addition to property O, the following 
conditions hold: 

0<t<OO (1.3a) 

(x , ( t )x , , ( t ) )  --> O, all nvam (1.3b) 
t --~ O0 

then the equation is a reducing equation.1 
Here is why equations (1.3) imply properties 1 and 2. Because each 

x,(t) is nonnegative, equation (1.3b) requires that for each solution in the 
set of solutions, at least one member of each pair xn,x m asymptotically 
approach zero. But this means that for each solution, all xn except possibly 
one must asymptotically approach zero. Because of property 0, indeed one 
x, must asymptotically approach 1. Thus property 1 is guaranteed by 
equation (1.3b). [It is interesting that, although equation (1.3b) is a state- 
ment about average behavior of solutions, it is capable of supplying 
information about an individual solution.] 

Now we may apply equation (1.3a) as t~oo ,  obtaining 

l •  t--~oo-~ 1]+OxPr~ (1.4) 

'The choice of t-.oo defining asymptotic behavior is made for mathematical convenience 
only. The reduction process should essentially be completed, for almost all solutions, in a 
finite mount of time. In fact, one hopes that a characteristic reduction time can be 
experimentally determined. 
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from which we find that the fraction (probability) of solutions for which 
xn(t ) asymptotically approaches 1 is xn(0 ). This is property 2. [We remark 
that although all we have used in this argument is the asymptotic behavior 
of (1.3a), we need the stronger form of this equation because it is difficult 
to construct a reducing equation that provides the appropriate asymptotic 
behavior unless it satisfies equation (1.3a) at all times.] 

How does one go about constructing a reducing Schrtdinger equa- 
tion? It seems simplest to add an extra term to the ordinary Schr6dinger 
equation. This term may be thought of as a new kind of interaction, a 
nonlocal interaction between "pointer positions." This interaction has two 
important aspects. First, the interaction "matrix elements" are supposed to 
be negligibly small between states that are macroscopically indistinguish- 
able, but large enough to dominate the dynamics when the states are 
macroscopically distinguishable. Second, the term's functional dependence 
on an(t ) must be responsible for the reducing behavior. It is this second 
aspect that we addressed in I, and continue to address in this paper. (The 
first aspect, which is certainly of great importance to a complete theory, 
will be briefly commented upon in our concluding remarks.) 

We have said that a reducing Schr6dinger equation must have many 
different solutions. Each solution predicts a definite outcome for the 
experiment that is being described. The inability of physicists to predict the 
precise outcome of an experiment is attributed to our inability to experi- 
mentally fix the variables responsible for determining the different solu- 
tions. What are these variables? 

In I, these variables were taken to be initial conditions, specifically the 
initial phase factors 0 n [a n = (xn) l/2exp iOn] were responsible for determining 
the final state vector. 

In this paper, we explore another mechanism. The idea is that the 
solution of the reducing Schr6dinger equation is different each time we 
solve it because the equation is different each time we solve it. That is, the 
interaction term is taken to be proportional to a random function of time. 
If we knew the precise time dependence of this function we could predict 
with certainty the result of the experiment. 

2. SUMMARY OF RESULTS 

In order to more precisely describe the content of this paper, it is 
useful to review the results obtained in I. Consider the ordinary Schrt- 
dinger equation 

ih dlq~, t~=H]Gt~+AN,, t~ (2.1) 
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[~, t> has an expansion (1.1) in basis states I~(t)> which are assumed to be 
known and to satisfy 

ih d [q~,(t) > = {H 0 -  h~o,)[qbn(t) > , ~on ~ <~nlHol~,~> (2.2) 

This equation, which implies that <q~,(t)ldlq)n(t)>/dt=O, settles the ques- 
tion of how much phase factor in the product anion> in equation (1.1) 
belongs to a n, and how much belongs to [q~n ). Equation (2.2) makes [q~n(t)> 
time independent if it is an eigenstate of H 0. 

Define the projection operator Pn(t)=]e~n(t))(O~(t)[, and premultiply 
e qua tion (2.1) by (~, t l Pn (t): 

(2.3) 

No information is lost by doing this: if one divides equation (2.3) by 
(~,t[~n(t)), one obtains Schr6dinger's equation expressed in the (~n(t)[ 
basis. Now take equation (2.3) and rewrite it, but replace the last term by 
its complex conjugate: 

(2.4) 

Equation (2.4) is no longer an equation linear in [qJ), for if we divide (2.4) 
by (qJ]~,,), this factor does not disappear, as we obtain 

a ) <q,.lr (2.5) ih dpn --~ ~/ ----<dPn]n]~ >-t- E <~ldPn> 

Nonetheless, equation (2.4) possesses property 0, for if (2.3), (2.4) are 
summed over n, the resulting expressions, which imply d@lq~>/dt =0, are 
identical. 

It was shown in I that equation (2.4) [or equation (2.5)] is a reducing 
Schr6dinger equation under certain assumptions. [Actually, a wider class 
of reducing equations was considered in I, but for reasons given there, and 
for some to be given here, (2.4) seems to be the simplest choice.] It was 
assumed that the effect of the nonlinear interaction term could be ade- 
quately treated in second-order perturbation theory. Then, by two different 
approaches (one due to Prigogine, the other due to Markov-Chandrasek- 
har), it was shown that one could obtain a partial differential (Fokker-  
Planck) equation to describe the probability density function O(xp x 2 . . . . .  t) 
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for the variables xn, in the solution set of equation (2.4) with random initial 
phase factors: 

( Ot [Odnra[2 0 2 - -  , Ox. Ox m XnX,.O, t >t 0 (2.6) 

(here Otnm~(~n[Al~m)). In Appendix A we present yet another derivation 
of this Cesult. 

It is easily seen that if the initial conditions imply Y, xn(0)= 1, then 

p ( t ) ~ 8 ( 1 - ~ x ~ )  (2.7a) 

is satisfied by the solution of equation (2.6). This entails property 0. 
Furthermore, if we multiply equation (2.6) by x~ or by XnXm, and 

integrate over all x i from 0 to 1, we obtain, respectively, 

~t  (x,,) =0  (2.7b) 

d 
- -~(X.Xm) = --4l%ml2(XnXm), n4=m (2.7c) 

(where ( Xn) =-- f dxpx,,, ( XnX m ) ~ f dXpXnXm). Clearly, equations (2.7b) and 
(2.7c) imply the conditions (1.3). Thus, properties 1 and 2 are satisfied. 

It should be noted that this proof (see Appendix A) requires many 
states 1~)  closely spaced in energy, since otherwise, as in quantum 
second-order perturbation theory, the amplitudes a n merely oscillate. This 
means, for example, that the solutions of equation (2.4) for a two-dimen- 
sional Hilbert space do not exhibit reduction behavior. It also should be 
mentioned that the nature of the "observable" states I~,(t)), to one of 
which the state vector reduces, is a question separate from the question of 
the mechanism of the reduction process, and will be addressed in Section 
5. 

We now summarize the results of this paper. We have investigated 
whether a reducing Schr6dinger equation can be found in the form 

ih(eon d if/=(~n[H[~b) + ~m A,,~/}mnF((~,n[~b),(~n[t~) ) (2.8) 

In equation (2,8), /},~, is an element of a Herrnitian matrix composed of 
random functions of time. Bran is a complex Brownian motion, and/~,~n is a 
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complex so-called "white noise" (these concepts will be introduced more 
carefully in the next section). Am, , is an element of a Hermitian matrix, the 
nonlocal interaction matrix mentioned earlier, that is supposed to be large 
only when Iq~,,), Iq~n) are macroscopically distinguishable. 

Our task is to find what form the (so far) arbitrary function F must 
take in order for (2.8) to be a reducing equation. As it stands, strictly 
speaking, equation (2.8) does not exist, since the derivative of Brownian 
motion--white noise--does not exist. However, there is a well-known 
procedure for giving a meaning to equation (2.8), where/~m', is regarded as 
the limit of a sequence of well-defined functions. This leads us to convert 
equation (2.8) to a set of (so-called) stochastic differential equations. Next 
we follow a well-known procedure for finding the Fokker-Planck equation 
describing the probability density function for the solutions of the 
stochastic equations. We may then use the Fokker-Planck equation to 
impose the conditions (1.3) which ensure that equation (2.8) will be a 
reducing equation. This leads to a partial differential equation that F must 
satisfy. We find a class of solutions for F, including 

F = <q~lq,,~ > <q,', I~P >/<4'Pq', > (2.9) 

which we believe is the simplest choice. The Fokker-Planck equation, 
when integrated over phase angles, becomes equation (2.6). 

In short, we find that equation (2.4) is also a reducing equation when 
the initial phases are not random, but instead the operator A is a random 
operator, with matrix elements of the form A,~/~,,~. Which mechanism is 
preferable to account for the uncertainty in nature: random initial condi- 
tions or a random interaction? Physically speaking, at present it is hard to 
say (but see Section 5). One may hope that a reducing equation like (2.4) 
might arise, perhaps as an approximation, in the context of a larger theory 
(e.g., a quantum theory of gravity), in which case the overriding theory 
would answer this question. However, mathematically speaking, the 
theory presented in this paper is to be preferred on two counts. First, the 
theory presented here is applicable to a two-dimensional (or any-dimen- 
sional) Hilbert space. Second, this theory is exact, not a second-order 
perturbation approximation. 

Our discussion proceeds as follows. In the next section the needed 
statistical concepts and results are presented. In Section 4 they are applied 
to obtain a reducing Schr6dinger equation. In Section 5 we suggest a 
method of obtaining the observable basis [~',) and the Hamiltonian H 0 
governing its time evolution. The last section raises some questions still to 
be answered before this can be considered a satisfactory theory. 
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3. STOCHASTIC DIFFERENTIAL EQUATIONS 

This section contains an informal introduction to the definitions and 
theorems needed in the next section. Rigorous proofs, or references to 
those proofs, can be found in the excellent text by Wong (Wong, 1971; see 
also Wong and Zakai, 1965; McShane, 1960), or elsewhere (Friedman, 
1975; McKean, 1969; Ash and Gardner, 1975). 

A stochastic process is a function of two variables, a coordinate (~) in 
a probability space, and time (t). It is called a process because it proceeds 
in time. It is called stochastic to distinguish it from a causal process (a 
fancy name for a function that depends upon time only). 

We shall take the name "'Brownian motion" to be synonomous with 
the Wiener stochastic process B(t) (the dependence on the variable ~2 is 
suppressed), which is completely defined by the following conditions: 

(i) Each "sample function" B(t) is a real continuous function of t. 
(ii) B(0) -- 0. 
(iii) B(t2)- B(t 0 has a Gaussian (normal) probability distribution with 

mean 0 and variance o21t2 -/11. [Note that this completely describes the 
probability distribution of B(t).] 

(iv) B(tN)-- B(t N_ ~), B(t N_ 1)- B(tN-2) ... .  ,B(t 2)-  B(t 0 are statisti- 
cally independent if t N/> t N_ ~ >/tN_ 2 �9 �9 �9 >1 t 2 > t I . 

Any expectation value of products of B's can be found using (i)-(iv): 
for example, if t 2 >/ll" 

(O(t2)O(tl)) = ([ O(t2)-  O(tl) ] [ O(tl) -- B(0) ] )  + ([ B(tl) - B(0)]2) 

= 0 +  o2tl = o2min(t2, tl) (3.1) 

(here ( ) represents the average over the probability space). 
It is helpful to know that Brownian motion can be represented as the 

limit of a Fourier series of period T (Wang and Uhlenbeck, 1945) 

B( t )=  lim 1 ~ 1 ( [ [ 2 ~ r k t , ] . .  ,2~rkt ,~ 
r - ~  -T k=0 ( _ ~ _ )  ak 1 - c ~  (3.2) 

where each ak,b k are independent random variables having a Gaussian 
distribution, zero mean, and variance 202T. One can formally take the 
limit in (3.2) to obtain 

1 (~dw 
B(t)= ~-~ jo --d"[ a(to)(l-costot)+ b(~)sintot] (3.3a) 

(a( to) ) f (b(w))=O,  (a(w')a(w))=(b(oY)b(w))=4~ro28(to'-~o) 

(3.3b) 
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Any expectation values of products of B'g can alternatively be found using 
the Fourier representation. 

The derivative of equation (3.3a) is formally 

�9 1 oo 
B(t) = - ~  f0 &o [ a(~0)sin~0t + b(~0)cos~0t] (3.4) 

/~(t) is called white noise. One might think of it as a Gaussian random 
process with zero mean and infinite variance, or as a process in whose 
frequency spectrum all frequencies are equally l ikely--except that, strictly 
speaking, B(t) does not exist (Brownian motion is nondifferentiable). 
White noise may best be considered as the limit of a process with a cutoff 
frequency spectrum [Equation (314) with a finite upper limit on the 
integral] as the cutoff increases�9 It is used in physical calculations as an 
idealization (since any physical random quantity has a high-frequency 
cutoff), largely because of its elegant mathematical qualities. Like the 
Dirac 6 function, it is really only used in integrals. Indeed, it is intimately 
related to the 6 function, for from (3.4), (3.3b)we obtain formally 

1 f0 (B(t2)[~(ti)) = (2~r) 2 4~ro 2 &ocos ~o(t 2 -  tl) = 026(t2- tl) (3.5) 

which leads to equations like 

( fabf(t2)dB(t:) Lbg(tl)dB(t,) ) =o2 fbf(t)g(t)dt (3.6) 

which can be rigorously justified. 
We are interested in solving differential equations involving Brownian 

motion that are linear in white noise. A simple example is 

dX(t) dt = F( B( t) )B( t) (3.7) 

One might expect that equation (3.7) can be solved by writing 

dX(t) = F ( B ( 0 ) d S ( 0  (3.8) 

and performing the integral. Surprisingly, this is not correct. That is, 
equations (3.7) and (3.8), as we shall interpret them, are not generally 
equivalent. 

Let us start with the differential equation (3.8), which is not well 
defined: do we mean by (3.8) 

AX,(t) = F( B( t) ) [ B( t + At)-- B( t) ] (3.9a) 
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o r  

AXz(t ) = F(B(t + At))[ B(t + At) -- B(t) ] (3.9b) 

(in the limit as Ate0) ,  or some other definition where the argument of F is 
evaluated at some intermediate time between t and t+At? To see that 
these are inequivalent definitions, set F =  B, and use (i)-(iv) to evaluate the 
expectation value of equations (3.9): 

A(X,(t)) = ( a ( t ) [  B(t + At) - B(t)]  ) 

= ([ B ( t ) -  B(0)] [B(t+At)--  B(t)] ) =0  (3.10a) 

A(X2(t)) =(  B( t + At)[ B(t + A t ) -  B( t) ] ) --([ B( t + A t ) -  B( t) ] 2) 

= o2At (3.10b) 

Of course, the same results can be obtained using (3.3) and (3.4): 

A(X~ ( t ) ) =  ~-~olim ( B( t -T- e)B( t)At ) 

( o 2 A t ,  c ~ d ~ .  {0 
= lim - - ~  ) Jo - ~  I, sIn ~ t  -T- sin o~e ) = e--,o a2 At (3.11) 

If B(t) was a Riemann integrable function, the forward difference 
approximation (3.9a) or the backward difference approximation (3.9b) 
would lead to the same results in the limit Ate0 .  In this case they do not. 
In our example, although we have not yet figured out what X 1 and X 2 are, 
by integrating (3.10) or (3.11) we see that their expectation values satisfy 

(x,(t)) - ( x , ( 0 ) )  =0  (3.12a) 

(x2( t) ) - (&(o)  ) = o2t (3.12b) 

Equation (3.12a), called the Martingale property, also holds for Equation 
(3.9a), where F is an arbitrary function of Brownian motion [using proper- 
ty (iv)]. Because of the simplicity of the Martingale property, it is useful to 
define a stochastic integral using forward differences: 

(b- a)/at 
s E t, Z(t))dB(t)-- lim 

A t ---~0 n = 0  
F(tn, Z(tn))[ ~(tn + At)-- ~(to)] 

(3.13) 
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where tn=--a+nAt, and Z(tn), which depends in any way on Brownian 
motion at times prior to (or equal to) tn, is called a nonanticipating function. 

Having defined what is meant by a stochastic integral, we can proceed 
to integrate (3.8), seeking a function X(t) satisfying 

X(t) - X(O) = fotF(B(t))dB(t) (3.14) 

Equation (3.8) is interpreted as equivalent to equation (3.14). The problem 
of how to integrate (3.14) was solved by It6 (who, incidentally, raised the 
problem by defining the stochastic integral). Here is a heuristic derivation 
of It3' s differentiation rule. 

Consider a function Y(t,B(t)). Using Taylor's expansion we obtain, 

dY(t) =-- r(t  + at, B(t) + d B ) -  Y(t, B(t)) 

= O, r )d t  + (0, r )dB + ~-(Vr)(dt) ~ +(0,~ r )  dt da + ~(0~ r )  d~dB + . . .  

(3.15) 

What is interesting is that if we only wish to retain terms up to first order 
in dt, we cannot neglect the last term on the right-hand side of (3.15), 
which is of second order in dB. We can certainly see that this is so, since 

((da) ~) --([ B(t + dr)- a(t)] ~) = o:dt (3.16) 

[property (ii)]. What is not obvious is that it is rigorously correct to set 
(dB) 2= o2dt in equation (3.15), obtaining thereby It6's rule: 

dY(t, B) = (Or Y) dt+ (Os Y) dB + �89 (O~ Y)o 2 dt (3.17) 

The last term in (3.17)--the correction term--would not be present if B(t) 
was merely a differentiable function. 

1 2 For example, if we set Y= ~B in equation (3.17), we get 

dkB~(t) = BdB+ �89 (3.18a) 

We can use this result to integrate equation (3.8): 

s x ( t ) - x ( o ) -  ~(tldB=~B~(t) ' ~  - ~o t (3.18b) 

[Note that (3.18b) satisfies the Martingale property (3.12a).] The usefulness 
of It6's rule in performing stochastic integrals should be clear. 
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The "derivation" of It6's rule given above also works in more general 
cases. Consider N independent Brownian motions Bl(t ) ..... Biv(t ), and M 
stochastic differential equations 

N 
dXg= mK(X , .... ,XM, t)dt + ~,, ok,(X , ..... XM, t)dB,, 

l = 1  

k = l  . . . . .  M 

(3.19a) 

It6's differential of a function r(Xl,...,XM, t) is 

8Y 02 82Y . 
dY=OtYdt+ ~r -~r dXk+-~- r~sk OXrOXs-- arkO~kat (3.19b) 

Similarly, a heuristic derivation of the differential form of equation 
(3.7) can be given: 

--~dX -21 d2X 2 2 1  --~d F/}(At)2 + . . .  AX(t)= At+ --~-tz (At) + . . . .  F B A t +  

1 O F  �9 2 1 
= F / } A t +  ~ - - ~ ( S a t )  + FB(At)2+ . . .  (3.20a) 

Following the procedure used in deriving Itr 's differential rule, we replace 
(/} At)2= (AB)2 by o 2 At and retain this term as it is of first order in At, but 
discard J~(ht) 2 as being of higher order. The differential form of equation 
(3.7) is thus 

dX = FdB + ~ ~B dt (3.20b) 

and not equation (3.8). The integral of equation (3.20b), when F =  B, is 
x ( t ) = x ( o )  i 2 + ~ B according to equation (3.18a) [compare with the integral 
(3.18b) of equation (3.8)]. This heuristic argument can be rigorously 
justified, as a rule in what has been called a "Stochastic Calculus" by 
McShane (1960). 

Actually, the kind of differential equation we wish to solve is not 
really like equation (3.7); it is more like 

dX(t)  
dt = F(X(t))B(t) (3.21) 

In order to integrate (3.21), we must first convert it to a stochastic 
differential equation. Because of Itr 's  rule, we do not expect that equation 
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to be dX= FdB. Indeed, following the argument given above in equations 
(3.20) we obtain 

a 2 ~F 
dX = FdB + -~ ~ gdt (3.22) 

Most importantly for physical applications, it can be rigorously 
proved that if the (undefined) equation (3.21) is written as the limit of a 
converging sequence of (defined) equations, where each equation in the 
sequence has B(t) replaced by an approximation to white noise ]such as 
equation (3.4) with a cutoff], the limit of the solutions is the solution X(t) 
to the stochastic differential equation (3.22). That is, equations (3.21) and 
(3.22) are equivalent. 

Furthermore, it can be shown that if F satisfies certain boundedness 
and continuity conditions, the solution X of equation (3.22), subject to a 
known initial condition X(0), is unique, continuous, and is a Markov 
process. A Markov process is a process in which knowledge of the probabil- 
ity distribution of X at any time t suffices for determining the probability 
distribution of X at all later times. We shall return to this point in a 
moment. 

Equation (3.21) can be generalized to M coupled equations 

N 

dXk = Gk(X l .. . . .  XM, t)+ • Fkt(X l . . . .  XM, t)B,(t ) (3.23) 
dt / = 1  

involving N independent Brownian motions. It is appropriate to regard the 
solution (Xk} of this set of equations as the solution of a set of stochastic 
differential equations 

N 02  M N OF~ 
dXk=G~dt+ ~ Fk~dB~+- ~- ~ ~ - ~ F ~ d t ,  k = l  . . . . .  M 

s = l  r = l  s = l  

(3.24) 

This solution enjoys all the properties cited above for the solution of 
equation (3.22). Note that the reducing Schr6dinger equation has the form 
(3.23), so we are interested in the solution of equation (3.24). 

Because the solution of a stochastic differential equation of the form 

dX = m ( X, t) dt + a(X, t) dB (3.25) 

is a Markov process, it can be completely characterized in terms of the 
conditional probability p(x, tlXo, to)dx for X to lie between x and x + dx at 
time t, given that X took on the value x 0 at time t o. It may be shown that 0 
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is in turn completely characterized by the mean and variance of dX(to), 
which can be directly calculated from (3.25): 

( dX ( to) ) = m ( Xo, to) dt (3.26a) 

( { dX(to) - (dX(to) ) ) 2) = o2o2( Xo, to ) dt (3.26b) 

[recall that X(to) and dX(to) are statistically independent]. The characteri- 
zation is in terms of two equations that O must satisfy: 

00 m(xo, to) ~__~OXo + 1 o2o2(Xo, to ) 020 (3.27a) 
ato ~Xo 

02  ~ 2 

+ Op O m(x,t)O+ (3.27b) o-7 = -  2(x't)P 

These are the backward diffusion equation, and the forward diffusion--or 
Fokker-Planck--equation, respectively, p can be determined by solving 
either one, subject to the initial condition p(x, t01x0, to) = 8(x - x0). 

To summarize: one can start with a differential equation linear in 
white noise such as equation (3.21), use It6's rule to construct the 
associated stochastic differential equation (3.22) for the solution, which has 
the form (3.25), and examine the statistical behavior of the solution X by 
investigating the solution O of the Fokker-Planck equation (3.27b). 

We shall need the generalization of (3.26), (3.27b) to the set of 
stochastic differential equations (3.19a): 

( dX k) = m k dt (3.28a) 

( ( dXg - ( dX k) ) { dX z - ( dX, ) ) ) = o2 dt Z Okm ~ ==-t~Z dt( O6)k' 
II 

(3.28b) 

0t0 0 O 2 0 2 ~ 

O t -  El, ~ rnkO+'2 ~ ~kaXl (~176 (3.29) 

4. REDUCING EQUATION 

We now begin our investigation of the conditions under which equa- 
tion (2.8) becomes a reducing Schr6dinger equation. It is convenient to 
rewrite equation (2.8) in terms of the amplitudes an=(~n(t)ltp(t)): 

ih~t  =hWna. +(q,.l(H-Ho)ltp)+ ~.A,..l~m.F(a,,,,a.) (4.1) 
m 
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To fix ideas, imagine that we are describing the interaction of a micro- 
scopic system with an apparatus. The states I%) describe the combined 
microscopic system plus apparatus. Initially, the states [q~) that have 
nonzero amplitudes an are assumed to be macroscopically indistinguish- 
able. By hypothesis, the matrix elements Am~ = (%~ [A [,#~) connecting these 
states are negligibly small, so equation (4.1) is equivalent to the usual 
Schrrdinger equation. After the interaction takes place, on the other hand, 
it is assumed that (q~,[H[ff,,)~(q~.[H0]q~m), i.e., the Hamiltonian H no 
longer effects transitions between the states [q~n), so equation (4.1) effec- 
tively becomes 

ih~t  =h~o,a, + EAm,  Bm, F(am,%) (4.2) 
m 

The states 1%) for which a, is nonzero are now macroscopically dis- 
tinguishable, and the matrix elements A,,. are large (for simplicity, we shall 
assume A,~ ------- 0 is always true). 

Equation (4.2) will be our starting point: we will examine its solutions 
for t ~  0, with initial conditions a,(0) assumed given. Of course, the 
transition from Schrrdinger's equation to equation (4.2) is not abrupt. 
There is a period of time during which both interaction terms on the 
right-hand side of equation (4.1) are of comparable magnitude. It is 
possible that there may be experiments (Papaliolios, 1967) 2 that can 
measure the interference effects between these two terms and thereby test 
the correctness of this theory. The methods of this paper can be used to 
investigate these interference effects, but we shall not do so here. 

Our first step is to write the stochastic differential equation that is 
equivalent to equation (4.2). Equation (4.2) differs from the comparable set 
of white noise differential equations (3.23) of the previous section in that 
the variables are complex, and the white noise is complex, i.e.,/~,,~ = BR,,~ 
+.iBxM ., where/~R,~, and/~i,~ are independent real white noise functions 
(BRm n =BRnm,Btm n = -  l~tnm). One can of course take the real and im- 
aginary parts of equation (4.2) and treat them as in Section 3. A simpler 
approach is to treat a, and a* as independent variables, and to be careful 
to apply It6's rule using 

dBm, dBr, = ~,,~6,r2oZ dt (4.3) 

Using the procedure of the previous section, we find that the 

2Also, see the discussion in Belinfante (1973). 
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stochastic differential equations equivalent to (4.2) are 

1 ~m Am~FmndB"~ da. = -- ion. a. dt + -~ 

+ tA,,~I ( ~  F~ aa m .m} (4.4) 

and the complex conjugate equations. In deriving equations (4.4) we have 
defined 

Fmn--F(am,a.,am,a.) (4.5) 

making explicit the independent variables upon which F depends. 
In order to obtain the Fokker-Planck equation describing the statisti- 

cal distribution of the solutions of equations (4.4), we need the means and 
nonvanishing variances. These are calculated from equations (4.4) to be 

O2 dt ~ IA~.I~ I ~F,,~ ~Fm. ] ( d a n ) = - i w . a .  d t + ~  --~a*. F-m" aa,. F,~ (4.6a) 

2"~ dt ~ IA,,~F,,~I; ( [  da*. - ( d a *  ) ] E da . - (da , , )  ] ) = - i f -  (4.6b) 

<[ da , . -  <d,,,.> ] I d a . -  <,~a.> ] > = - - -  
2 o  2 

dtlA,~12F.~V.,~, 
h z 

m v~n 

(4.6c) 

and the complex conjugates of equations (4.6a), (4.6c). The Fokker-Planck 
equation is 

. . . . .  E 2 ~--zi-rz-. IA...v~.l~o Ot ~ Oa. Oa* dt p +-~. ,m oagoa. 

~ [ ~ as 1 h 2 n~,m O~.Oa~ IA'~"I2F'~F'~'04 Oa*Oa* IA"~I2F~"F*~P (4.7) 

Before seeking a reducing Schr6dinger equation, it is interesting to 
apply these results to the ordinary Schr6dinger equation. If we set F=a,,, 
in equation (4.2) we have the ordinary Schr6dinger equation with a 
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random Hamiltonian. The Fokker-Planck equation (4.7) is then 

3----0-0 = i ~, (,O n anp -- a* p 
3t n 

0 2 [ 3 3 2 

[ -W'-- CtnP + -ys-~ a,, p + 2 ~ a,,,a~p a,,,a,~p 
+ - ~  E IA.m[ 2 3 . 3 2 . 

n, m oa n Oan oa n oa n 3a m 3a n 

, , * * ( 4 . 8 )  3amOan aman t3 

Because we are mostly interested in the behavior of the magnitudes [an], it 
is convenient to change to real variables xn, 0 n defined by 

a n = (Xn)l/2eiOn (4 .9)  

and the complex conjugate equation. In terms of these variables, equation 
(4.8) becomes 

0, Xo, F,xmlAm.12 0 o o 
- - =  , Ox. Ox m x~xm 3x. Ox m P 

1 32 ( ) 1 32 [ x "  ~ 1 32p ] (4.10) 

Equation (4.10) provides all the necessary information about the 
statistical behavior of the solutions of the Schr6dinger equation. For 
example, we may find the behavior of (Xk)  by multiplying equation (4.10) 
by x k and integrating over all x,,, On: 

O 2 
d ( x k ~  ~- F ~m [AmkJ2( (Xrn~ - - ( X k ~  } (4.11) 

Equation (4.11) has the form of Pauli's (1926) "master equation" based 
upon the second-order perturbation theory "golden rule." It differs in that 
(1) equation (4.11) is exact, (2) the expectations (xn) appear in equation 
(4.11) (not the probabilities xn themselves), and (3) there is no energy-con- 
serving 3 function in equation (4.11) (because the white-noise Hamiltonian 
contains all frequencies, and so effects transitions between states of any 
energy). It can be seen from equation (4.11) that asymptotically, where 
( ~ )  = 0, all (x  n) become equal. 
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A diffusion equation for the amplitudes x, alone can be obtained by 
integrating equation (4.10) over all angles: 

op s ( 
~--7-- h z E IA,~,I 2 0 .,m OX. OX m XnXm OX n OX m 0 (4.12) 

(we have written f dOp~p). Equation (4.12) was also arrived at in I as a 
consequence of the ordinary Schr6dinger equation with a random initial 
phase approximation. It was shown there that equation (4.12) implies that 
the probability density p asymptotically uniformly fills aI1 the available 
"phase space" (~Xn= 1,0<X, < 1). 

We now leave this example of the use of this formalism and return to 
the main problem: how to choose the function F so that properties 0, 1, 
and 2 will be satisfied, and equation (4.2) will be a reducing equation. 

Property 0 will be achieved by the vanishing of 

ih d_d ~ a,  an= ~ �9 , _ �9 Am, Bm,(a . F,,~ a,,F~m ) (4.13) 
e l l 7  m,n 

Because of the independence of the/}m,, equation (4.13) will be satisfied if 
and only if 

a*Fm, = amF* m (4.14) 

In order to impose properties 1 and 2 in the form of equations (1.3), we 
multiply the Fokker-Planck equation (4.7) by a*a, and integrate over all 
Xk, 0 h, obtaining 

dt = a* + a, + - ~  ~ IAm, lalFm, I 2 (4.15) 

[ d ( a , ) / d t  is given by equation (4.6a)]. To make d ( x , ) / d t  vanish identi- 
cally, we require the quantity within the brackets on the right-hand side of 
equation (4.15) multiplying each [Am,[ 2 to vanish: 

[ Orm. , OF,.. ] 
an* ~ F ~ n  Oa m Fnm +c.c.+21F,,~12=0 (4.16) 

(c.c. is the complex conjugate of the first term). This equation, to which we 
will shortly return, is solved in Appendix B. 

Equation (1.3b) can be implemented by multiplying the Fokker- 
Planck equation (4.7) by a*a,a*a m and integrating over all x/,,8 k. If we use 
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equation (4.14) and equation (4.16) to simplify the result, we readily obtain 

d - - 4 a  2 - - 4 0 2  
--~(X, Xm)= h2 (Xmlf ,  ml2) = h-----S--(x, IFm,[2) (4.17) 

Equation (4.17) implies that asymptotically 

x lFm. I 2 0 (4.18) 
t---~ oo 

This is because (x,,Xm) is a positive semidefinite function, and it is 
monotonically decreasing by equation (4.17). Therefore, it must asymptoti- 
cally achieve a lower bound, which means that the expectation value on 
the right-hand side of equation (4.17) must asymptotically vanish. But as 
x~[Fm~[ 2 is also positive semidefinite, its expectation value can only vanish 
if it asymptotically vanishes for each sample. 

Now if F is such that 

xnlFmn[ 2= 0 implies x,,x m =0  (4.19) 

(for example, if [Fro,,[ z= x~-lx~, r > 0), then equation (1.3b) is obtained. 
The most general form of F satisfying equations (4.14) and (4�9 is 

found in Appendix B [equation (B.8)]. It is argued there that the simplest 
(but by no means the only) choice that also satisfies equation (4.19) is 

Fm, =--a* a , /  a * (4.20) 

It is easy to see that (4.20) satisfies (4.14), (4.16), and (4.19), and so 
equation (4.2) in the form 

�9 a 

i h ~ t  =htOna ~ + ~ , -'n A,n~B,,~a2, ~, (4.21) 
M t~n 

entails properties 0, 1, 2 and is a reducing equation�9 
In this specific case, the stochastic differential equations equivalent to 

equations (4.21) are 

a 2 1 aman - ~ A 2 [am[ z 
d a n - - ' - i t ~  dBm" h 2 ~m --m'~ a* (4.22) 

according to equation (4.4). The associated Fokker-Planck equation is, by 
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equations (4.6), (4.7) 

Op . 0 , 

o2 E +~-5 E [Am,[ 2 a laml 2 a [aml 2 a 2 
n,m Oan an p +  O----a-fn a,, P + 2 W S s - ~ a m a * P  * oanoa;~ 

3 2 02 
, , a ' a * ^  

OamOa n amanP Oa,,,Oa;, ,,, n P (4.23) 

If we change to variables x,, 0 n according to equation (4.9), then equation 
(4.23) becomes 

%--t- -- ~. % - ~  + hY ~ ]Amn]2 a a z ,,,,,, Ox. ax.~ (x,,X,nP) 

X n 1 3 2 [Xmp).q_ 1 3 2 1 02p 1 
q-'~-~n2, ~n "~'-~mmm (X"--~nP)+ 2 00nOOm j (4.24) 

This should be compared with the Fokker-Planck equation (4.10) for the 
ordinary Schr6dinger equation. (Also compare equation 4.25 below with 
equation 4.12). 

A diffusion equation for the amplitudes x n alone can be found by 
integrating equation (4.24) over all angles: 

aP ~ ( ) o-7 ffi h2 IA,.f 0 a 2 - -  Ox. ax,,, XnX"P (4.25) 

(we have written fdOp---~p). This equation, introduced in I, was discussed 
in Section 2 [equation (2.6)]. It is easily seen to imply equations 
(2.7a)-(2.7c), which embody properties 0, 1, and 2. 

5. D E F I N I N G  I~n) A N D  H o 

In this paper and in I, mechanisms have been presented that might be 
used in a complete theory that explains why events occur. What is perhaps 
surprising is that it is fairly easy to construct a reducing equation just by 
adding a term to the Schr6dinger equation, that the term need not be 
terribly complicated, and that there is a reasonably large class of terms 
that will do the job. 
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However, it should be emphasized that so far this is not a complete 
theory. There are still unspecified elements: the observable states [q~n), 
their time development Hamiltonian H o, and the interaction operator A. 
Let us discuss these. 

In I we left the definition of ]q~n) and H 0 open, but here we will 
venture a response to the problem, following closely the work of Kiibler 
and Zeh (1973). The point is that a natural basis exists if we split the 
physical system under discussion into two parts, a "small" part and a 
"large" part. For example, we may consider the small part to be a single 
microscopic system, and the large part to be an apparatus making a 
measuremen.t on this system. Or, we may consider the small part to be a 
microscopic system plus apparatus, and the large part to be the "environ- 
ment" surrounding the apparatus. 

The state vector together with this split define a basis at every instant 
of time because it is always possible to expand the state vector [~) in the 
"Schmidt canonical form" 

) = anrOn)rXn) (5.1) 
n 

where (lan)} is an orthonormal basis for the small part, and {]?tn) ) is an 
orthonormal basis for the large part. This expansion is "almost" unique 
(the meaning of that will be clarified in a moment). Of course, what makes 
equation (5.1) so strict a requirement is the absence of a double sum over 
the complete basis [%)lXm). If one describes the measurement as is 
customary, by the density matrix 

= Ion>lanf=<onl (5.2) 
n 

the benefit of the form (5.1) is apparent: the basis Ion) is the one in which 
the density matrix is diagonal, and arguments have been given (Jauch, 
1968; Zeh, 1970, 1971) for the two examples mentioned above that these 
are actually the states observed in nature. We suggest that our physical 
states be identified as 

I n>=lon>l ) (5.3) 

The decomposition (5.1) is unique, up to choices of phase factors 
multiplying l an), 1?~), if the magnitudes a n are all different. We will fix the 
phase factors (up to an initial phase factor) by requiring 

( nldlan) / dt = < ldlX.> / at--O (5.4) 
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If two magnitudes are equal, say [a.[= [%[, but the nth and ruth states are 
macroscopically indistinguishable, it does not matter how we choose the 
two basic vectors to span the n-m subspace. If the nth and ruth states are 
superpositions of two macroscopically distinguishable states, we choose the 
macroscopically distinguishable states as basis vectors. 

There is yet another ambiguous aspect: how do we decide where the 
small part of the physical system under consideration ends and the large 
part begins? Our expectation is that the predictions of the theory are 
relatively insensitive to a reasonable location of this division. 

This method of choosing a basis automatically determines the time 
evolution of the states I6.), i.e., determines the Hamiltonian H 0. To see 
this, we write the reduction equation (2.5) as 

i h d  I~> = ih E ( ~i.lo. > IXn > -4- a=lO. > IX. > -4- anlO. >1~ > } 
n 

a,, �9 mn 
=Hi t )>+  m,nE I~ 

(5.5) 

Upon taking the scalar product of equation (5.5) with (a.[(~[ we 
obtain the reduction equation for the amplitudes: 

- -  --  an ihd~= Honnan + H~ + ~ { H~m am + -~ a*A~m~ } (5.6) 

In equation (5.6) we have written H=/70•  1 + 1 • 2 0 +  H I, where /4o is 
the part of the Hamiltonian operating solely on the (1%)} subspace, 2 ~ 
acts only on the (IX,)} subspace, and H l is the interaction part of the 
Hamiltonian. Connection with a previous notation is made by the identifi- 
cation 

h,o = ~ -  ~_ ~On. (5.7) - - . , t i  Onn - -  xa 

The scalar product of equation (5.5) with (OnI(Xm[ (m ~n) yields 

iham<%ld.> + i h a . @ . , l ~  > = ~,, nff;"~as (5.8) 
2r 

Note that there is no direct dependence on A in equations (5.8). Equations 
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(5.8) are completely solvable, and the solution is (Kiibler and Zeh, 1973) 

n s  . s m  . 2 i[rn)= Etlom)[g~nsasan -Hj~ aj a,,,]/[lanl -la~l ] (5.9a) 
m , s  

ilX~> = E'lXm)[H~msa~a*-H~a*am]/[la, lZ-laml 2] (5.9b) 
m , s  

[The prime in the sum denotes that m v~n: also, the right-hand sides of 
equations (5.9) do not become infinite if [anl = laml, m4 =n, as the dynamics 
must be such that the numerator vanishes too.] We find d l o. )IX.)/dt from 
equations (5.9) to be 

ih d Iq, n)= (n0 + / ~ ~  hOgn -I-/~O)]~n) 

n $  ~ s m  ( nymsa, a, - Hi;ha j am) 
#o1,~. ) -  IL,) Y,' [~ 

ms la,,[Z-la,,,I 2 

m s  . _ _  s n  :~ 

+Ion) ~/[Xm) (HT~asan H2smaj am) (5.10) 
ms la,12--la,,I 2 

From equations (2.2) and (5.10) we identify 

Ho~Ho  + H~ +/4o (5.11) 

(note that <~mln0l~,.>=ho~.8.m) as the Hamiltonian governing the time 
evolution of the state ]~s n). 

Before closing this section, we wish to make two more points. 
First, in the context of this discussion, we can see the random initial 

phase and the random interaction mechanisms as two extremes. If the 
matrix elements Am" ff in equation (5.6) are essentially constant, we invoke 
the first mechanism, while, if the matrix elements fluctuate rapidly (per- 
haps due to their dependence on the large part state vectors, or perhaps 
simply due to a fundamental randomness in nature), we invoke the second 
mechanism. 

Last, how might we apply this method of choosing the observable 
basis to the physical system consisting of the whole universe? It would be 
surprising if the universe could be split into two pieces so that in the 
Schmidt decomposition (5.1) both Ion) and I ~ )  are almost always observ- 
able states, i.e., are not superpositions of macroscopically different states. 
Perhaps it is possible to split the universe into many smaller pieces in such 
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a way that, in the Schmidt-like decomposition 

t~> = ~ a.101.>102.>103.>" "- (5.12) 
n 

each [oi. > corresponds to an observable state. This raises questions about 
the uniqueness of the decomposition (5.12), about the size of the "cells" 
into which the universe must be divided, about the effectiveness of the 
Hamiltonian in coupling cells, etc. 

6. CONCLUDING REMARKS 

It is still an open question as to what the operator A should be that 
governs the reduction process. We have stated constraints on it: its matrix 
elements should be small between macroscopically distinguishable states. 
How can this be achieved? After all, states can differ macroscopically in 
many ways: in energy, momentum, angular momentum, position, etc. 

We conjecture that, if [~b> is initially a superposition of states that are 
"close" in energy, it is sufficient that the magnitude of matrix elements of 
A depends only upon the macroscopic distinguishability of appropriate 
position variables characterizing the states. The thought here is that, if two 
states close in energy should differ by a macroscopic variable that is not 
position, the normal dynamics of the states according to the Schr6dinger 
equation will soon make them differ in position as well. After that, 
reduction to one of the states will proceed because A,~ will be large. 

It is appropriate to make the following point here. In the previous 
sections of this paper we have, for simplicity, assumed that the matrix 
elements Am, are all large simultaneously, so that the reduction will be to 
precisely one of the states [%) in the superposition (1.1). However, if A 
behaves as outlined above, the matrix elements Amn are only large between 
macroscopically distinguishable states, and the reduction proceeds to a 
family of macroscopically indistinguishable states. 

The dynamics of this process is as follows. For definiteness, suppose 
that 

I~> = ~] anlq~,,> + ~] b,,[X,,,> (6.1) 
n m 

where {1%>) are macroscopically indistinguishable, and {]X~>) are mac- 
roscopically indistinguishable, but each l~n > differs macroscopically from 
each IX,,,). This might be considered as a model for an experiment with 
just two outcomes, with the set {l@n>) representing various microscopic 
states of a single "pointer" position, and similarly for the set {IX~>}. Let us 
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define x~=la,[ 2, ym-lbm[ 2, x =Ex , ,  Y~EYm ( x + y = l ) .  What happens 
may be likened to two rows of soldiers shooting at each other. It is easily 
shown by taking first and second moments of equation (4.25). 

that 

0--7 h2 E IA,nnl 2 0 0 2 --n,m OX n Oy~ X~V'nP (6.2) 

(x ( t ) )=x(O) ,  ( y ( t ) )=y (O) ,  (x ( t )y ( t ) )  --> 0 (6.3) 
t---~ oo 

which implies that either the set (x,)  asymptotically vanishes andy(oo)= 1 
[with probability y(0)], or the set (Ym) asymptotically vanishes and x(oo)= 
1 [with probability x(0)]. 

It is probably worthwhile to try to construct an operator A with the 
desired characteristics, and to test its behavior in calculations, especially 
those involving interference between the Hamiltonian and the reduction 
term (Papaliolios, 1967). But ultimately, a theory such as this needs to be 
legitimized by being a consequence of a larger theory that has more ties to 
established physics. In what areas might such a theory arise? Outside of the 
present application, there seems to be at present no groundswell of need 
for a nonlinear quantum theory (but see Bialynicki-Birula and Mycielski, 
1976). Perhaps we might look to the operator A for a suggestion. It is a 
nonlocal long-range interaction between a system and itself. This carries 
the connotation of relevance to self-energy considerations, and perhaps 
gravitational theory. Indeed, it is an attractive thought that the juncture 
between general relativity, which describes events but does not describe 
microscopic behavior, and quantum theory, which describes microscopic 
behavior but does not describe events, might be an appropriate place to 
look. 

APPENDIX A 

In this appendix we give a more familiar proof than those given in I 
that equation (2.5) is a reducing equation in second-order perturbation 
theory. As in Section 4, we express equation (2.5) in terms of the ampli- 
tudes a,---= (q~n(t)l~(t)): 

ihd- ff  a-a" (A.1) 
m a* 

and consider solving equation (A.1) for t > O, when <~,[(H-Ho)lqJ>-----O. 
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We first integrate equation (A.1) using standard second-order per- 
turbation theory. With the substitution b n = -,o, t a~e - ,  the integral of equa- 
tion (A.1) is 

b.( t)=b.(O)-ih-'  f'EAmnb*(t,)bn(tOb*-'(tOei~ (A.2) 
"0 m 

(%,._*0 n -~%). We assume that the matrix elements A,, n can be taken out 
of the time integrals because they vary slowly enough over the time 
interval ~--h2/Y~ml~mnl2,~(,Omn), When equation (A.2) is iterated to second 
order we obtain 

bn( t) = bn(O) - i ~ -  I Z Amnb*m(O)bn(O)b*n - l ( 0 ) ~ ' n m ( t )  
m 

-- h-2 Z AmnA*mbn(O)br(O)b*(O)bm l(0)bn* -l(o)~nmrm(t) 
m~r 

_ h-2 ~ AmnA~*bn(O)b*(O)b*(O)b* -2(O)~nmnr(t ) 
m,r  

- h- 2 ~ A , , ~ A *  b r (O  ) b *  m ( 0 )  b *  n - 1(0) ~"nmrn ( t )  
m, r 

fn,,( t ) - -  fo'e'~.~t, at ~ 

~nmkt( t) -= s tl ) dt I 

(A.3) 

(A.4a) 

(A.4b) 

It is assumed that, to an ensemble of experiments described by 
equation (A.1), at time t - 0  there corresponds an ensemble of initial 
conditions that have identical values of xn(0), but completely random 0n(0 ) 
[bn(O)=an(O)=[xn(O)]l/2expiOn(O)]. If we denote by ( ) the ensemble 
average over all phase angles, we can make use of such relations as 

( b* n (0) b re(O) ) = ~.mXn (0) 

( bo (0) b, (0) b*m (0) bs '(0) ) = ~..~mx:(O) 

(A.5a) 

(A.5b) 

etc. It is then straightforward to calculate to second order 

(xn(t)) = x. (0)  (A.6a) 

( ( Xn( t) - x.(0) } { xm( t ) - Xm(O) } ) = --2h-2lA,~12x,~(O)x.(O)g,~(t), 

n ~ m  (A.6b) 
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((xn(t)--xn(O))2> =2h--2 Z IAmnlZxm(O)xn(O)gmn(t) (A.6c) 
m 

sin2(wmn t/2) 
Sm,(t ) = = t2rrd(~Omn ) (A.7) 

(to,,,n t /2)  2 

(we have used Ann = 0). (This may be compared with a similar calculation 
for the ordinary Schr6dinger equation itid n =he%a, + Y. m Anmam: equation 
(A.6a) is replaced by 

= x (O) + h - = Z  IA 12[xm(O)- xn(O)]g n(t) 
m 

while equations (A.6b) and (A.6c) are unchanged.} 
We make the usual assumptions involved in second-order time-depen- 

dent perturbation theory, such as many states closely spaced in energy, 
and IAm.l 2 varying slowly with *%, and 

h 2 
o<t<< (A.8) 

~mlAmn126(~Omn) 

Because of the restriction (A.8) on the time interval over which the 
second-order perturbation term dominates the solution, we are faced with 
the problem of extending the solution past this time interval. 

If we do the second-order perturbation calculation above for the 
interval (t + T, T) instead of the interval (t, 0), and assume that the phases 
of bm(T ) are randomly distributed, the results are identical to equations 
(A.6) (with the obvious replacements of t by t + T, and 0 by T). But is this 
assumption of random phases at a time greater than zero justified? It is in 
this case. We obtained equations (A.6) from equations (A.3) by using 
equations (A.5), but actually we only needed equation (A.5a) to be true to 
first order and equations like (A.5b) to be true to zeroth order for the 
argument to go through. In deriving equations (A.6) for the interval (2t, t) 
we need 

( b*( t)bm( t) ) = xn( t)Sn,~ + O(IA 12) (A.9a) 

(bn(t)br(t)b*(t)b,2~(t))=dn,,SrmX2m(t)+O(IA[), etc. (A.9b) 

Equation (A.9b) is obviously correct, since bn(t)= bn(0 ) to zeroth order. It 
is straightforward to calculate from equation (A.3) that equation (A.9a) 
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also ho lds - - in  fact, to second order. Thus the random phase assumption at 
t -  0 implies the phases are also random at a later time t > 0. 3 

One is therefore justified in extending equations (A.6) over successive 
intervals (t,0), (2t, t), (3t,2t), etc. We may now treat the solutions of the 
reduction equation as a Markov process whose means and variances are 
given by equations (A.6). We can immediately write down the associated 
Fokker-Planck equation (3.29) using equations (A.6): 

O p  __ 'n" (0 0)  2 
Ot h2 m~,n [Arnn[26(~mn) Ox n Ox m XnXmP (g .  10) 

This is equation (2.6), which guarantees reduction behavior, as was pointed 
out in Section 2. 

APPENDIX B 

In this appendix, we find the most general solution 

Fmn=--F(am,an,a*,a *) (B.1) 

satisfying equations (4.14), (4.16), and (4.19). Upon  making the substitu- 
tion 

Zmn-- ln(a*Vmn ) (B.2) 

equations (4.14) and (4.16) become, respectively, 

Zm.=:*m (B.3) 
1 3 1 0 1 0 1 0 

- -  ~ z* .  * - (B.4)  a n Oa* n Zmn a* m Oa m Zmn + a* a m ha* zmn --0 

[We have used equation (B.3) to simplify equation (B.4),] 
It is easily seen that if Zm, is an arbitrary function of a,,a*,a*a,+ 

a'a,., then equation (B.4) is satisfied. If in addition to these three variables, 
we introduce a fourth variable w=--a*a . -  a 'am,  equation (B.4) becomes 

~(~ 0w m. + Zm*.) = 0 (B.5) 

3The random phase assumption at t = 0 does not imply that the phases are random at t > 0 for 
the ordinary Schrodinger equation: equation (A.9a) fails in this case. The Schr/~dinger 
equation solutions seem to require a random phase approximation for all t > 0, in order to be 
described by the Fokker-Planck equation (4.12). 
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Thus the most general solution of equation (B.4) can be written 

Zmn = A (a  n, a'm, a* a n + a ' a m )  + iB (B.6) 

where A is an arbitrary complex function of its three arguments, and B is 
an arbitrary real function of all four variables. 

The symmetry condition (B.3) requires 

A = A R (a  n a* m, a n + a*, a*~ a n 4- a*a,n ) (B.7a) 

where A R ( , , ) is a real-valued function when its arguments are real, and 

B = ~(s, u, v, w) - if(s, u, v, - w) (B.7b) 

where ~ is a real function of its four real arguments s=--ana*+a*am, 

u=--anam + a* a *, v=-- -a 'an+a'am,  and w. 
Thus, the most general expression for Frn n satisfying equations (4.14) 

and (4.16) is, from equations (B.2), (B.6), and (B.7): 

1 , 
Finn = -'s R(ana~,an  + a* ,a*an  + a'mare) ei(~'( . . . . . . .  )-~( ...... -w)) (B.8) 

a~ 

[we have written R=expAR;  R( , , ) is a real-valued function when its 
arguments are real]. 

For condition (4.19) to be obtained, [R [2=0 must imply that x n x  m =0.  
Since 

aria* = O<=> x n x  m = 0 (B.9a) 

a n + a* = O ~ x n x  m = 0 (B.9b) 

a*an+a*am=O*=>xn=O and x m = O  (B.9c) 

the only way to achieve (4.19) is for R to vanish when its first argument 
ana* vanishes [note that (B.9c) is too restrictive, since xn = 1, Xm = 0  is a 
desired possibility]. The simplest way for this to happen is if R ~ ( a n a * ) ' ,  

r > 0 .  
However, we must in fact have r >/1. This is because of the following 

technical point. As was mentioned in Section 2, in order to prove that the 
solution of a set of stochastic differential equations is a Markov process 
(and thereby satisfies a Fokker-Planck equation), the right-hand side of 
the stochastic equations must be bounded. Applying this to (4.4), we s e e  

that Fro, must be bounded. But by equation (B.8), F,,~ will approach 
infinity as [a*[---~0 unless R ~ a ~ ,  r >1 1. 
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The simplest choice for Fro, is to cut out all dependence on variables 
other than the needed dependence on ana* m. We choose the lowest power of 
ana* consistent with all requirements, so 

a~am* 
Fm~ = - -  (B. IO)  

an* 

This has the important advantage of allowing us to write the reducing 
Schr6dinger equation (2.4) as a quadratic form in the state vector [~b). 
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